Understanding Wireless Security

Outline

- What you will learn
 - General overview of 802.11
 - Authentication Methods
 - WEP
 - Overview
 - Key Hierarchy
 - Encryption/Decryption
 - WPA
 - Overview
 - Key Hierarchy
 - Encryption/Decryption
 - WPA2
 - Overview
 - Encryption/Decryption
 - Defense Strategies
 - Monitoring
- Summary
- Question and Answer

What you should know

In order to cover the largest amount of information we are going to have make some assumptions:

- You have a general understanding of the TCP/IP protocol suite
 - Primarily layers 2 3
- You have a general understanding of protocol basics
- You have a general understanding of how Radio Frequency (RF) works

802.11 Primer

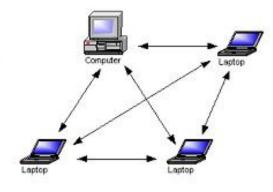
- Borne out of the IEEE 802 LAN/MAN Standards Committee (LMSC)
- Part11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
 Specifications standard
- Drop in replacement for Ethernet (802.3)
 - Upper layer protocols should be none the wiser
 - This seamless integration comes at a stiff price under the hood complexity

802.11 Primer: Physical Interface

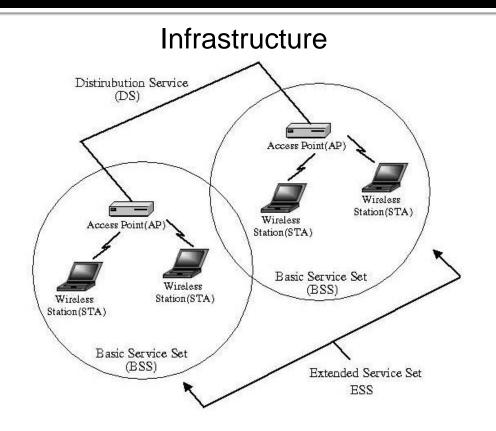
DSSS

- Direct Sequence Spread Spectrum
- 2.4GHz ISM Band
 - Industrial / Instrumentation, Scientific, Medical (ISM)
 - 2.400GHz 2.4835GHz
 - 14 channels or frequency divisions
 - I II used in the United States
- 1000mW power maximum
 - Most devices are 30mW 100mW

802.11 Primer: MAC Sublayer Tidbits


CSMA/CA

- LBT (Listen Before Talk)
- Exponential back off and retry
- Collision avoidance via physical carrier sense and Network Allocation Vector
 - Network Allocation Vector (NAV)
 - Virtual Carrier Sense
 - Limits the need for physical carrier sensing of the air interface in order to save power.



Configuration Options

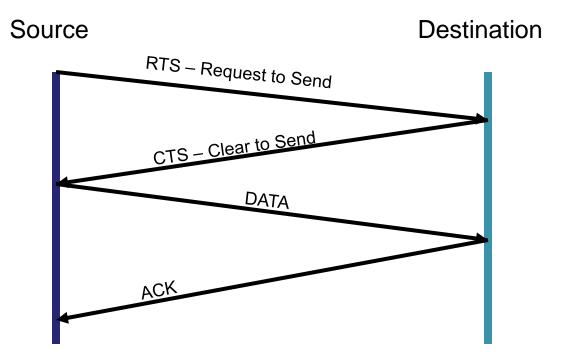
AD Hoc

Independent Basic Service Set (IBSS)

Management Frame Subtypes

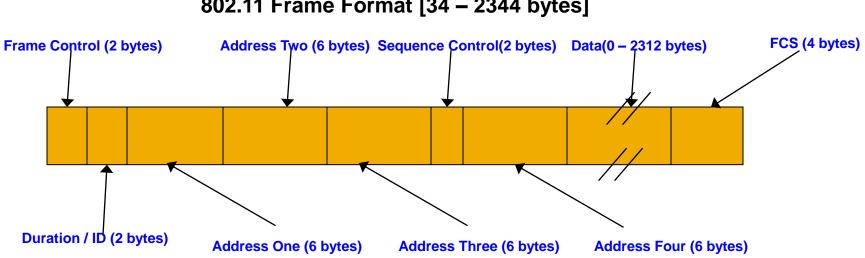
Beacon

- Transmitted frequently announcing availability and capabilities of BSS
- Probe Request and Response
 - Client initiated request for a WLAN
 - Response is essentially the same as a beacon
- Associate Request and Response
 - "I'd like to be a part of your BSS"
- Disassociate
 - "Get a stepping!"

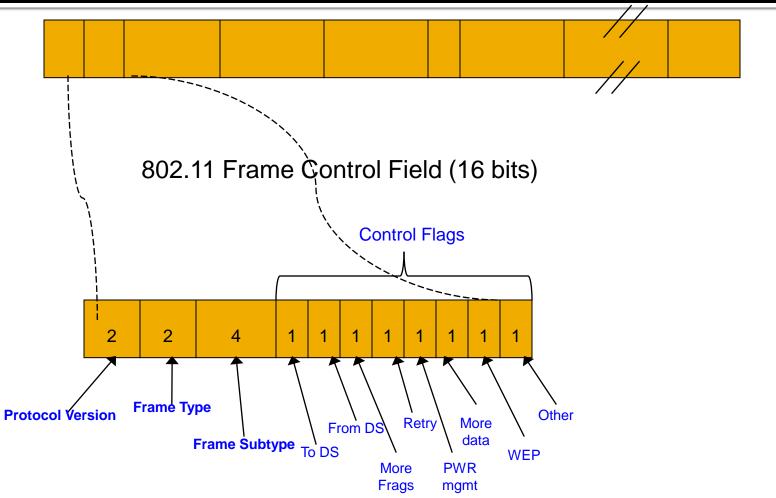

Control Frame Subtypes

Request to Send (RTS)

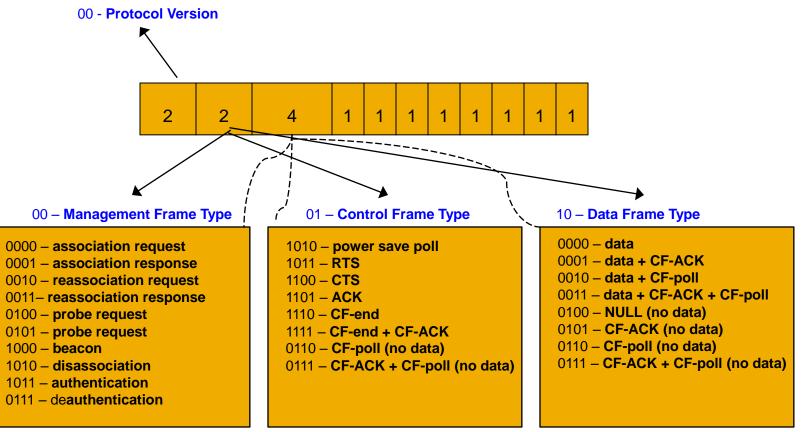
- "I'd like to send a frame or two"
- Updates NAV values for neighboring stations (transmitter)
- Clear to Send (CTS)
 - "Sounds good"
 - Updates NAV values for neighboring stations (receiver)
- Acknowledge (ACK)
 - "Got your data"
 - Also updates NAV as per CTS



Four-Way Handshake

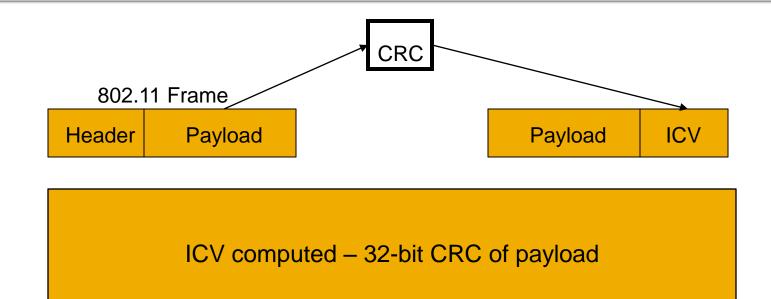

802.11 Frame Layout

802.11 Frame Format [34 – 2344 bytes]


802.11 Control Field

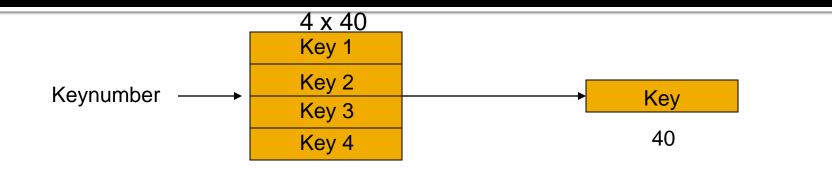
802.11 Types and Subtypes

802.11 Type and Subtypes



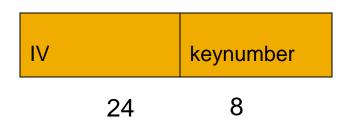
Wired Equivalent Privacy (WEP)

- Purpose bring the security of wired networks to 802.11
- Provides Authentication and Encryption
- Uses RC4 for encryption
- · 64-bit RC4 keys
 - Non-standard extension uses 128-bit keys
- Authentication built using encryption primitive – Challenge/Response

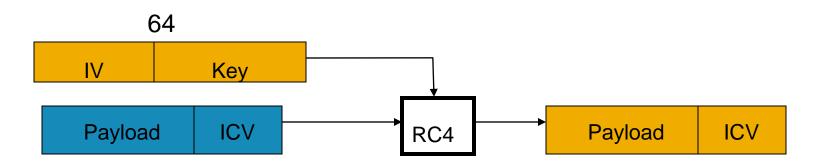


WEP Encryption

* 4-byte Integrity Check Value (ICV)

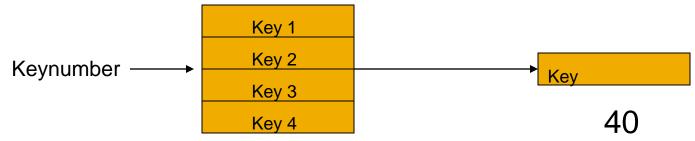


- Integrity Check Value (ICV) computed 32-bit CRC of payload
- One of four keys selected 40-bits (10 Hex character)


WEP Key	ASCII	Hex
1	too complicated	746f6f2063
2	too simple	746f6f2073
3	norfolk southern	6e6f72666f
4	locomotive	6c6f636f6d

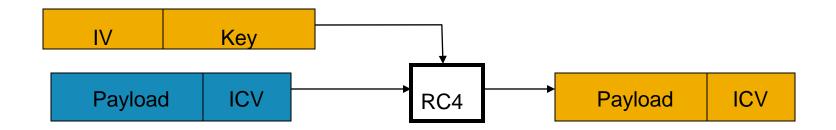
- Integrity Check Value (ICV) computed 32-bit CRC of payload
- One of four keys selected 40-bits
- Initialization Vector (IV) selected 24-bits, prepended to keynumber

- Integrity Check Value (ICV) computed 32-bit CRC of payload
- One of four keys selected 40-bits
- Initialization Vector (IV) 24-bits, prepended to keynumber
- IV+key used to encrypt payload+ICV

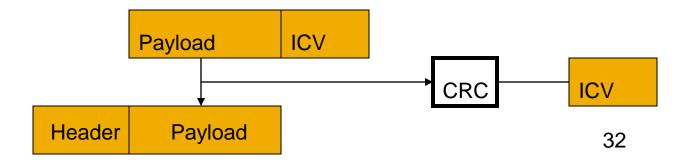


WEP Frame				
Header	IV	keynumber	Payload	ICV

- Integrity Check Value (ICV) computed 32-bit CRC of payload
- One of four keys selected 40-bits
- Initialization Vector (IV) selected 24-bits, prepended to keynumber
- IV+key used to encrypt payload+ICV
- IV+keynumber prepended to encrypted payload+ICV

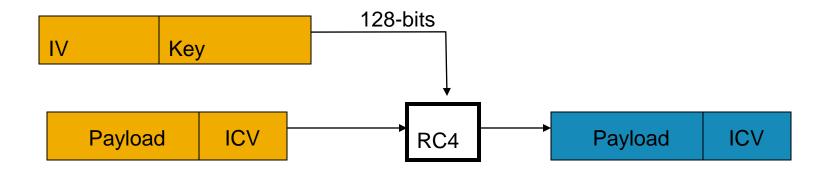

WEP Decryption

• Keynumber is used to select key


WEP Key	ASCII	Hex
1	too complicated	746f6f2063
2	too simple	746f6f2073
3	norfolk southern	6e6f72666f
4	locomotive	6c6f636f6d

- Keynumber is used to select key
- ICV+key used to decrypt payload+ICV

- Keynumber is used to select key
- ICV+key used to decrypt payload+ICV
- Integrity Check Value (ICV) recomputed and compared against original


WEP Authentication

- Uses WEP encryption primitives
 - Nonce¹ is generated and sent to client
 - Client encrypts nonce and sends it back
 - Server decrypts response and verifies that it is the same nonce.
- Authentication is optional

¹Number used Once

128-bit Variant

- Purpose increase the encryption key size
- Non-standard, but in wide use
- IV and ICV set as before
- 104-bit key selected
- IV+key concatenated to form 128-bit RC4 key

WEP Keying

- Keys are manually distributed
- Keys are statically configured
 - Implications: often infrequently changed and easy to remember!
- Four 40-bit keys (or one 104-bit key)
- Key values can be directly set as hex data
- Key generators provided for convenience
 - ASCII string is converted into keying material
 - Non-standard but in wide use
 - Different key generators for 64- and 128-bit

WEP Vulnerability

- WEP and 802.11 standards recommends (not requires) the IV be changed after every packet.
- No standard to generate IVs
- IV field is 24 bits, forcing a busy connection to exhaust all IVs in less than a half a day
- Random 24 bit IV will be expected to have a collision after transmitting 5000 packets (Birthday Problem)
- 24GB to construct a full table, which would enable the attacker to immediately decrypt each subsequent ciphertext

Dynamic WEP

- Dynamic WEP changes WEP keys dynamically
 - Different key on a per-user, per-session basis
 - Key changes based upon a timer or number of packets
- Theory: Prevent attacker from being able to collect enough data to crack the current encryption keys
- Reality: Can be cracked given current technologies
 - Though Key only good until a timer or number of packets threshold is reached

WEP Attacks (1)

- The FMS Attack (2001)
 - Named for Fluhrer, Mantin, and Shamir
 - First key recovery attack
 - Based on predictable headers
 - Attack can compromise the first few bytes of the keystream
 - Leads to correlations in other bytes
 - 4-6 million packets needed to succeed with probability greater or equal to 50%

WEP Attacks (2)

Korek¹Attack (2004)

- Based on the FMS Attack, but extended with 16 more correlations between the first few bytes of an RC4 key, keystream, and the next key byte.
- Reduced the number of packets needed to 700,00 to succeed with probability greater or equal to 50%

1 Korek was a forums username where the majority of wireless cracking mathematical efforts were postulated.

WEP Attacks (3)

PTW Attack (2007)

- Named for Pyshkin, Tews and Weinmann
- Extends both FMS and KoreK
- Process every packet and cast votes for likelihood of key
- The key is generally close to having the most votes
 - Test each key for correctness
- Reduced the number of packets needed to 35,000-40,000 to succeed with probability greater or equal to 50%

WEP Attacks (4)

- Chopchop Attack
 - Allows an attacker to decrypt the last *m* bytes by sending *m* * 128 packets to the network.
 - Does not reveal the root key
 - Only plaintext
 - Some access points are not vulnerable to this attack
 - Some may seem vulnerable at first but actually drop data packets shorter that 60 bytes

Wi-Fi Protected Access (WPA)

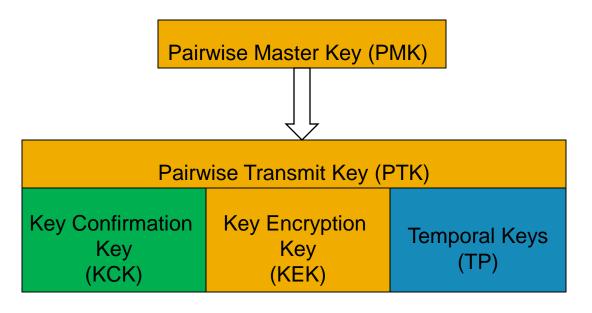
- Security standard developed after WEP's vulnerabilities had been exposed and successfully attacked
- Development was a collaborative effort between the Wi-Fi Alliance and the Institute of Electrical and Electronics Engineers (IEEE)
- Purpose was to be an immediate solution while the long-term solution (802.11i/WPA2) was being finished

Wi-Fi Protected Access (WPA) (cont)

- WPA strengthened WEP by:
 - Including authentication using 802.1X framework (commercial systems) or a passphrase (home systems)
 - Creating a key hierarchy out of the master key
 - Doubling the size of the initialization vector (IV) used during encryption
 - Including a more robust data integrity algorithm (Michael)

Wi-Fi Protected Access (WPA) (cont)

- A session consists of:
 - Authentication of the client to the access point (802.1X/passphrase)
 - 4-way handshake to exchange key values and generate the key hierarchy
 - Data session to send encrypted information using the Temporal Key Integrity Protocol (TKIP)
 - RC4 for encryption
 - Michael for integrity checking (MIC)


WPA Key Hierarchy

- Key Hierarchy consists of a master key and session keys
 - Master key, called the Pair-wise Master Key, is derived from either an 802.1X key or from the passphrase
 - Session keys, collectively called the Pair-wise Transient Key, are derived from the master key

WPA Key Hierarchy (cont)

- Pair-wise Transient Key is segmented into:
 - Key Confirmation Key and Key Encryption Key used during the 4-way handshake
 - Temporal Keys (2) used during the data session

Beck-Tews Attack

- Martin Beck from the Technical University of Dresden discovered a flaw in the TKIP protocol
 - Assisted by Erik Tews¹ from the Technical University of Darmstadt
- Allows an attacker to decrypt data to a wireless client, slowly
- Once a packet is decrypted, opportunity to transmit up to 7 forged packets of any content
- No authorization needed for success

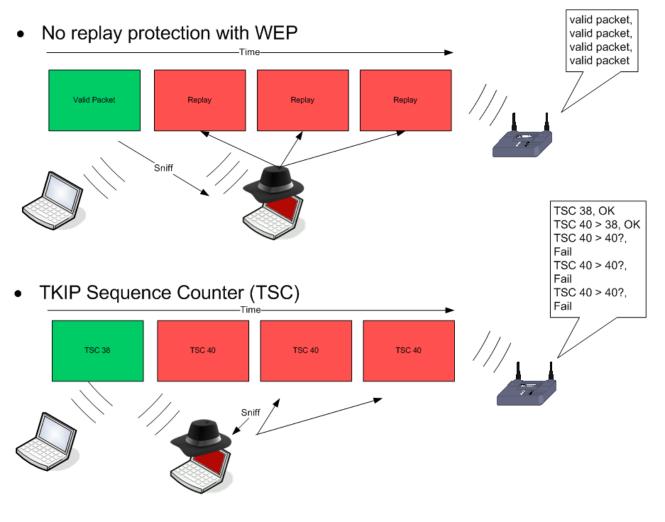
¹ Erik Tews of PTW fame

Beck-Tews Attack (cont)

- Not a key recovery attack
 - Attacker can only decrypt one packet at a time; does not allow earlier/later frame decryption
- Does not affect AES-CCMP¹ networks (required for FIPS 140-2)
- Workarounds will mitigate this flaw
 - Not perfect, but will buy some time
- Some APs can be configured to mitigate this flaw

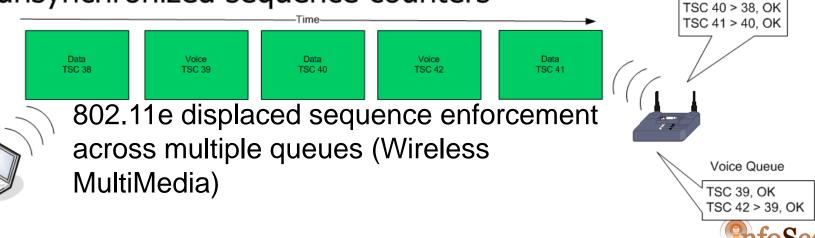
Counter Mode with Cipher Block Chaining Message Authentication Code Protocol

Who Is Affected?

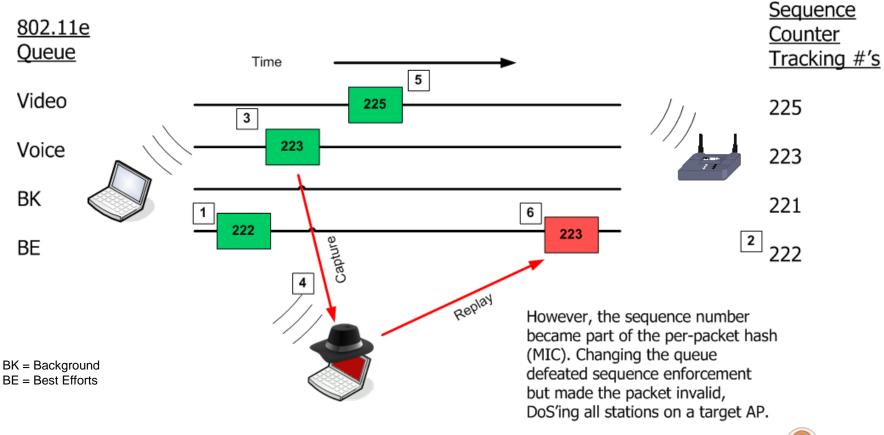

- All deployments of TKIP
 - Regardless of WPA or WPA2
 - Regardless of PSK or 802.1X/EAP authentication
- Current exploits target TKIP networks with QoS enabled
 - QoS is required for much of 802.11n

Attacker Opportunity

- Attacker can decrypt a plaintext packet from AP to station (not station to AP)
 - Not more than 1 unknown byte per minute
 - Any packet can be selected for partial data
- Targeting an ARP packet (68 bytes), between 14 and 17 bytes are unknown
 - 8 MIC, 4 ICV, 2-5 IP source and destination
- Once plaintext is known, attacker can inject not more than 15 arbitrary packets
 - ARP poisoning, DNS manipulation, TCP/SYN request

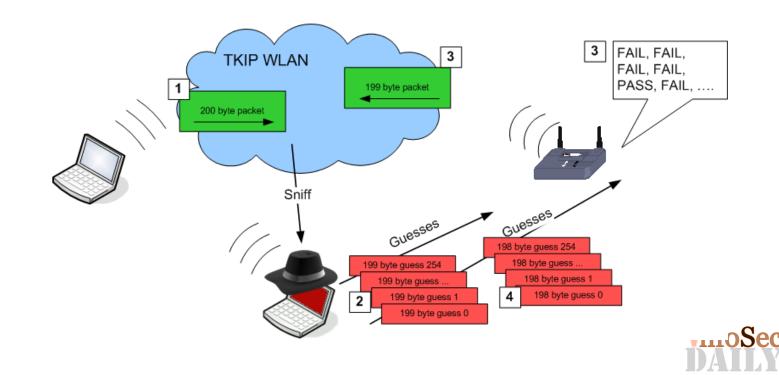

April 2003: TKIP Fixes WEP Flaw

July 2005: QoS Complicates Matters


- QoS relies on the ability to reorder packets for delivery
- This requirement conflicts with TKIP sequence delivery
- Solution: Maintain multiple independent, unsynchronized sequence counters

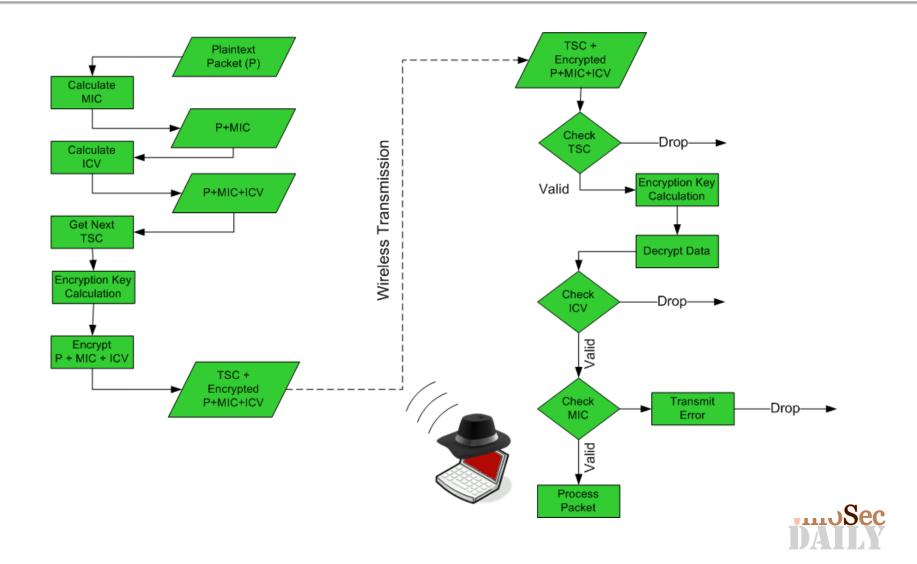
Data Queue

TSC 38. OK


802.11e Replay Attack

WEP ICV Attack - ChopChop

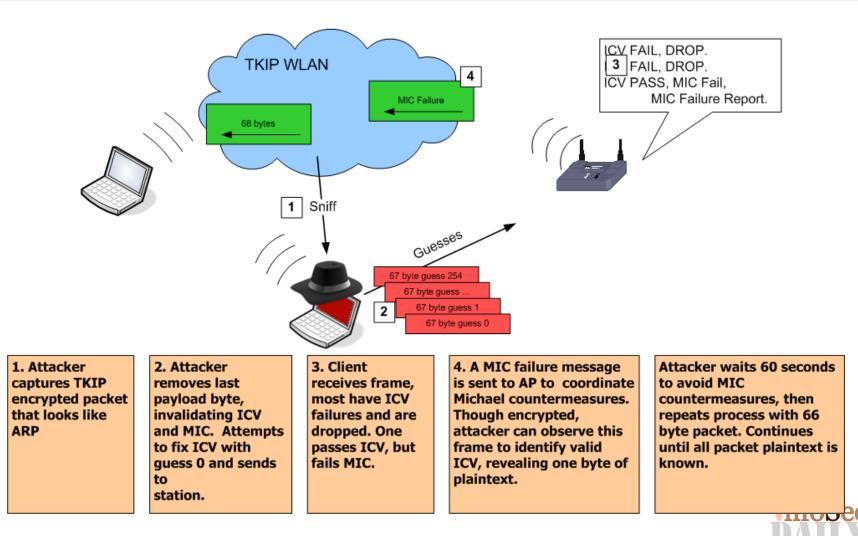
- Integrity Check Value (ICV) WEP 32-bit CRC
- Vulnerable to modification and repeated guess until positive response observed (chopchop attack)
- Repeated to recover entire plaintext packet contents



Fixed in TKIP

- TKIP adds a new per-packet hashing algorithm (MIC) known as Michael
- Weak algorithm, but best that could be accommodated on legacy WEP hardware
- Includes provision for countermeasures
 - Two invalid MIC's within 60 seconds shuts down AP and STA's for 60 seconds
 - Must pass ICV and TSC check first
 - Called MIC countermeasures

TKIP Encryption/Decryption



So How Is This Exploited?

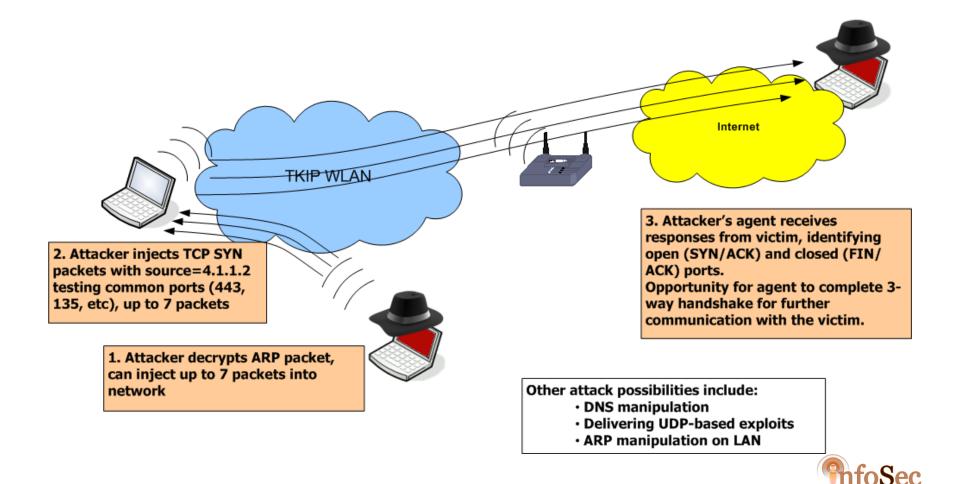
- ICV failure generates no network activity
 - MIC failure causes the client to generate a notice the attacker can observe
- If MIC failure observed, ICV passed!
- Take a packet, chop last byte, guess and TX until MIC failure observed
- Wait 60 seconds to not trigger countermeasures
- Repeat for next-to-last byte

TKIP Chopchop ICV Attack

Attack Result

- Not more than 1 byte per minute decrypted
- ARP is mostly known plaintext
 - Five bytes unknown assuming /24 (A.B.C.Y and A.B.C.Z)
- Also need to determine ICV and MIC values (12 bytes)
- Only 17 bytes to recover, 14 if network is known (RFC1918 guess?)

Result: 68 bytes ARP, 8 bytes MIC, 4 bytes ICV known plaintext to the attacker in 14-17 minutes



Another Michael Weakness

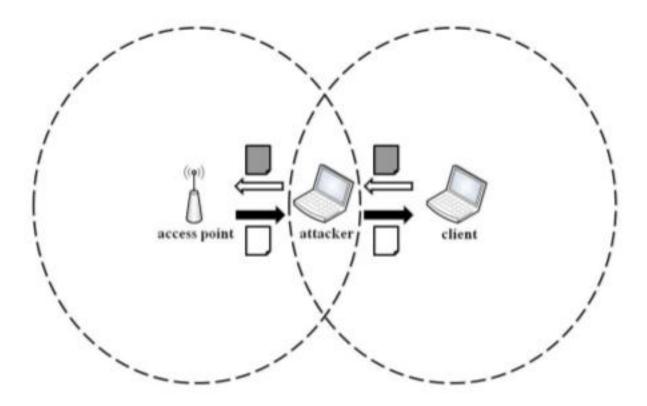
- Michael is invertible; you can determine the key from plaintext + MIC
- Attacker decrypts ARP, knows Michael key and can craft any packet up to 68 bytes
- Attacker can use other QoS queues where attacked
- TSC is lower to inject arbitrary packets into network (can target any destination or protocol)
- Injection is blind, attacker cannot decrypt responses
- Attacker can only inject up to 7 packets (3 other standard 802.11e queues and 4 non-standard)
 - Potential for 15 injected packets, depending upon driver
 - One Linux implementation can potentially inject 31 packets

Practical TKIP Attack Example

MIC DoS Attacks Easy Now

- Michael algorithm countermeasures
 - AP must disconnect all stations and shutdown the network following two MIC failures within 60 seconds
- Very easy for an attacker to trigger, shutting down AP for 60 seconds

DOT11-TKIP_MIC_FAILURE: TKIP Michael MIC failure was detected on a packet (TSC=0x0) received from [mac-address]



Message Falsification Attack on WPA

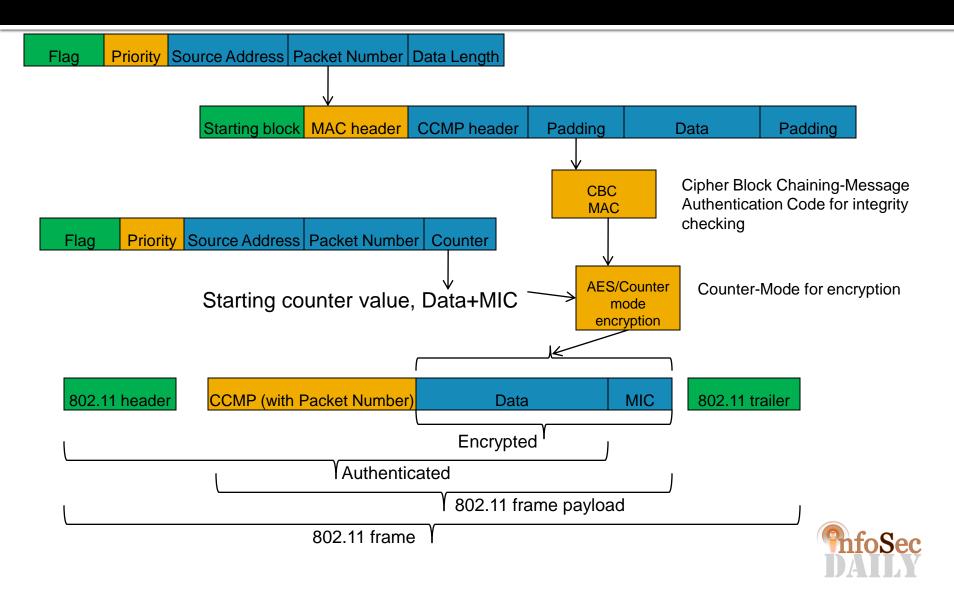
- Developed by Toshihiro Ohigashi and Masakatu Morii
- Applies Beck-Tews attack to the MITM attack in order to work any WPA implementation.
 - Three modes required for attack:
 - <u>Repeater mode</u>: Attacker relays to the receiver all packets that include SSID beacon with no modification
 - <u>MIC key recovery mode</u>: The purpose of this mode is to obtain a MIC key. A MIC and a checksum are recovered by the chopchop attack based on the MIM attack, and the MIC key is recovered. The execution time is about 12-15 minutes.
 - <u>Message falsification mode</u>: The purpose of this mode is to falsify an encrypted packet using a MIC key. When a target is an ARP packet, the execution time of the method is about 4 minutes.

Message Falsification Attack on WPA (cont)

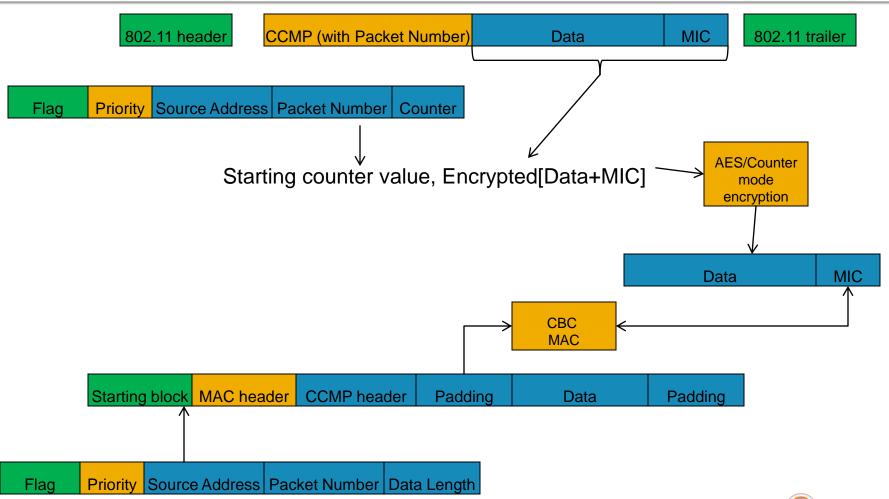
Message Falsification Attack on WPA (cont)

Reducing the Execution Time of the Attack

- Beck-Tews attack recovers all the 4 bytes of the checksum
- Checksum is compared with the checksum calculated from candidates of the ARP packet.
- Comparison of 4 bytes checksum is effective
 - Requires at least 3 minutes for the wait time for MIC error.
- Ohigashi and Morii compare only parts of checksum (last byte)
- Reduce the time of the wait time for MIC error.
- Attack reduces the Beck-Tews attack by three minutes
- Execution time is about one minute.



Wi-Fi Protected Access 2 (WPA2)


- Security standard developed by the Wi-Fi Alliance and is an implementation of IEEE's 802.11i
- Uses the same authentication process, 4-way handshake, and key hierarchy as WPA
- Replaces TKIP with the Advance Encryption Standard (AES) CCMP protocol
 - AES in Counter-Mode for encryption
 - AES in Cipher Block Chaining-Message Authentication Code (CBC-MAC) for integrity checking

WPA₂ Encryption

WPA₂ Decryption

So are we recommending?

WEP

- Dynamic WEP
- Current key rotation is set to
 - Remember our recommendation is reduce key to 2 minutes
 - This comes a cost to performance
- Cisco Aironet changes the initialization vector (IV) on a per-packet basis
- WPA
 - Not currently using QoS
 - Start planning transition to AES-CCMP
 - Investigate and apply TKIP key rotation every 2 minutes
 - Capture and analyze logging data on AP's

Defense Strategies

- Best approach: migrate away from TKIP to AES-CCMP
 - Will likely require moving to WPA2
- Difficult to implement if you need to support any legacy devices
 - Laptops and embedded devices (handhelds, etc)
- Client re-configuration will be necessary, making this resource-intensive
 - Active Directory simplifies deployment

Defense Strategies (cont)

- Forcing more frequent key rotation will limit how much plaintext can be derived
 - Each minute of key life can be used to determine a byte of plaintext
 - 4 minute key rotation = 4 bytes plaintext
 - Consensus is to reduce key lifetime to 2 minutes

This defense is the best immediate-term option, but requires testing to understand the impact to all devices.

Product-Specific Steps

configure terminal aaa authentication dot1x <profilename> multicast-keyrotation unicast-keyrotation timer mkey-rotation-period 120 timer ukey-rotation-period 120

> Cisco Autonomous – 802.1X reauthenticate Warning: Significant negative impact

conf t dot1x timeout reauth-period 120 broadcast-key change 120

Defense Strategies (cont)

- Disabling QoS support on an AP will defeat tools, does not solve issue
 - Not an option for 802.11n High-Throughput (HT) networks
- Vendors may choose to fix TKIP with implementation hacks
 - Keep an eye on AP and client vendor software update pages

Monitoring

- WIDS technology can identify this attack
 - You may need a software update to get new signature support
 - Action: look for WIDS that can detect the "TKIP ICV attack"
 - No signature in Kismet ... yet
- Log monitoring on AP's

Cisco Autonomous APs

DOT11-TKIP_MIC_FAILURE_REPORT: Received TKIP Michael MIC failure report from the station [mac-address] on the packet (TSC=0x0) encrypted and protected by [key] key

Aruba Networks

Received TKIP Micheal MIC Failure Report from the Station [mac addr] [bssid] [apnames]

Questions and Answers

Resources

- IEEE Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications
 - http://standards.ieee.org/getieee802/download/802.11-2007.pdf
- Tews/Beck paper on TKIP and WEP
 - <u>http://dl.aircrack-ng.org/breakingwepandwpa.pdf</u>
- Raul Siles attack analysis information
 - <u>http://radajo.blogspot.com/2008/11/wpatkipchopchop-attack.html</u>
- Toshihiro Ohigashi and Masakatu Morii
 - <u>http://jwis2009.nsysu.edu.tw/location/paper/A Practical Message</u>
 <u>Falsification Attack on WPA.pdf</u>

